Optimal mean-variance portfolio selection using Cauchy–Schwarz maximization

نویسندگان

  • Hsin-Hung Chen
  • Hsien-Tang Tsai
  • Dennis K. J. Lin
چکیده

Fund managers highly prioritize selecting portfolios with a high Sharpe ratio. Traditionally, this task can be achieved by revising the objective function of the Markowitz mean-variance portfolio model and then resolving quadratic programming problems to obtain the maximum Sharpe ratio portfolio. This study presents a closed-form solution for the optimal Sharpe ratio portfolio by applying Cauchy–Schwarz maximization and the concept of Kuhn–Tucker conditions. An empirical example is used to demonstrate the efficiency and effectiveness of the proposed algorithms. Moreover, the proposed algorithms can also be used to obtain the optimal portfolio containing large numbers of securities, which is not possible, or at least is complicated via traditional quadratic programming approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tail Mean-Variance Model and Extended Efficient Frontier

In portfolio theory, it is well-known that the distributions of stock returns often have non-Gaussian characteristics. Therefore, we need non-symmetric distributions for modeling and accurate analysis of actuarial data. For this purpose and optimal portfolio selection, we use the Tail Mean-Variance (TMV) model, which focuses on the rare risks but high losses and usually happens in the tail of r...

متن کامل

Optimal multi-period mean-variance policy under no-shorting constraint

We consider in this paper the mean-variance formulation in multiperiod portfolio selection under no-shorting constraint. Recognizing the structure of a piecewise quadratic value function, we prove that the optimal portfolio policy is piecewise linear with respect to the current wealth level, and derive the semi-analytical expression of the piecewise quadratic value function. One prominent featu...

متن کامل

Portfolio Selection with Parameter and Model Uncertainty ∗

In this paper, we extend the mean-variance portfolio model to explicitly account for uncertainty about the estimated expected returns and/or the underlying return-generating model. We do this by first imposing an additional constraint on the mean-variance portfolio optimization program that restricts each parameter to lie within a specified confidence interval of its estimated value, and then b...

متن کامل

A Mean-Variance Model for Optimal Portfolio Selection with Transaction Costs

On the basis of Markowitz mean-variance framework, a new optimal portfolio selection approach is presented. The portfolio selection model proposed in the approach includes the expected return, the risk, and especially a quadratic type transaction cost of a portfolio. Using this model may yield an optimal portfolio solution that maximizes return, and minimizes risk, as well as also minimizes tra...

متن کامل

Portfolio Choice and the Effects of Liquidity

This paper discusses how to introduce liquidity into the well known mean-variance framework of portfolio selection using a representative sample of Spanish equity portfolios. Either by estimating mean-variance liquidity constrained frontiers or directly estimating optimal portfolios for alternative levels of risk aversion and preference for liquidity, we obtain strong effects of liquidity on op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011